Multimodality Imaging Methods for Assessing Retinoblastoma Orthotopic Xenograft Growth and Development
نویسندگان
چکیده
Genomic studies of the pediatric ocular tumor retinoblastoma are paving the way for development of targeted therapies. Robust model systems such as orthotopic xenografts are necessary for testing such therapeutics. One system involves bioluminescence imaging of luciferase-expressing human retinoblastoma cells injected into the vitreous of newborn rat eyes. Although used for several drug studies, the spatial and temporal development of tumors in this model has not been documented. Here, we present a new model to allow analysis of average luciferin flux ([Formula: see text]) through the tumor, a more biologically relevant parameter than peak bioluminescence as traditionally measured. Moreover, we monitored the spatial development of xenografts in the living eye. We engineered Y79 retinoblastoma cells to express a lentivirally-delivered enhanced green fluorescent protein-luciferase fusion protein. In intravitreal xenografts, we assayed bioluminescence and computed [Formula: see text], as well as documented tumor growth by intraocular optical coherence tomography (OCT), brightfield, and fluorescence imaging. In vivo bioluminescence, ex vivo tumor size, and ex vivo fluorescent signal were all highly correlated in orthotopic xenografts. By OCT, xenografts were dense and highly vascularized, with well-defined edges. Small tumors preferentially sat atop the optic nerve head; this morphology was confirmed on histological examination. In vivo, [Formula: see text] in xenografts showed a plateau effect as tumors became bounded by the dimensions of the eye. The combination of [Formula: see text] modeling and in vivo intraocular imaging allows both quantitative and high-resolution, non-invasive spatial analysis of this retinoblastoma model. This technique will be applied to other cell lines and experimental therapeutic trials in the future.
منابع مشابه
Looking for the Most Suitable Orthotopic Retinoblastoma Mouse Model in Order to Characterize the Tumoral Development.
Purpose Because retinoblastoma therapies have many adverse effects, new approaches must be developed and evaluated on animal models. We describe orthotopic xenograft models of retinoblastoma using different strains of mice, suitable for this purpose. Methods Human retinoblastoma tumors were established on immunodeficient mice by subcutaneous engraftment of tumors from enucleated eyes. The ort...
متن کاملEstablishment of an Orthotopic Xenograft Mice Model of Retinoblastoma Suitable for Preclinical Testing.
Retinoblastoma is a rare cancer that occurs during childhood. The goal of current and future therapeutic strategies is to conserve the eye and visual function without using external beam radiotherapy, which is known to increase the risk of secondary cancers in genetically predisposed patients. Multimodality therapy (usually intravenous but also intra-arterial and intravitreal chemotherapy, tran...
متن کاملEstablishing Intracranial Brain Tumor Xenografts With Subsequent Analysis of Tumor Growth and Response to Therapy using Bioluminescence Imaging
Transplantation models using human brain tumor cells have served an essential function in neuro-oncology research for many years. In the past, the most commonly used procedure for human tumor xenograft establishment consisted of the collection of cells from culture flasks, followed by the subcutaneous injection of the collected cells in immunocompromised mice. Whereas this approach still sees f...
متن کاملDevelopment of an Orthotopic Human Pancreatic Cancer Xenograft Model Using Ultrasound Guided Injection of Cells
Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xe...
متن کاملTargeting the p53 pathway in retinoblastoma with subconjunctival Nutlin-3a.
Retinoblastoma is a rare childhood cancer of the retina that begins in utero and is diagnosed in the first years of life. The goals of retinoblastoma treatment are ocular salvage, vision preservation, and reduction of short- and long-term side effects without risking mortality because of tumor dissemination. To identify better chemotherapeutic combinations for the treatment of retinoblastoma, s...
متن کامل